UNIVERSITY OF MUMBAI

Syllabus for M.Sc. Semester III & IV

Program: M.Sc.

Course: Environmental Sciences

(Credit Based Semester and Grading System with effect from the academic year 2012–2013)
M. Sc. Environmental Sciences Syllabus
Credit Based and Grading System
To be implemented from the Academic year 2012-2013

Semester –III

<table>
<thead>
<tr>
<th>Course</th>
<th>Unit</th>
<th>TOPIC</th>
<th>Credits</th>
<th>L / Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSEVS301</td>
<td>I</td>
<td>Water and Wastewater Pollution Control</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Air Pollution Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Hazardous and Radioactive Waste Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Biomedical Waste and Electronic (E-Waste Management)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSEVS302</td>
<td>I</td>
<td>Environmental Monitoring and sampling</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Instrumental methods of environmental analysis- I</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Instrumental methods of environmental analysis- II</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Statistical Aspects</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PSEVS303</td>
<td>I</td>
<td>Basic concepts of Eco-toxicology</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Toxicants in the Environment</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Evaluation of toxicity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Organ toxicity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSEVS304</td>
<td>I</td>
<td>Industrial Hygiene</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Industrial Work Environment</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Disaster Management and Risk Assessment</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Safety</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Practicals
<table>
<thead>
<tr>
<th>Course</th>
<th>TOPIC</th>
<th>Credits</th>
<th>L / Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSEVS3P1</td>
<td>Practicals based on PSEVS301</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PSEVS3P2</td>
<td>Practicals based on PSEVS3O2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PSEVS3P3</td>
<td>Practicals based on PSEVS3O3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PSEVS3P4</td>
<td>Practicals based on PSEVS304</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>08</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>
SEMESTER –IV

Theory

<table>
<thead>
<tr>
<th>Course</th>
<th>Unit</th>
<th>TOPIC</th>
<th>Credits</th>
<th>L / Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSEVS401</td>
<td>I</td>
<td>Introduction to Ecotechnology</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Sanitation -PhytosanitationAnd Green Inhibitors</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Climate Change Mitigation And Carbon Sequestration</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Restoration Ecology& Remediation Technology</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PSEVS402</td>
<td>I</td>
<td>Environmental Biotechnology</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Biotechnology in Protection and Conservation of the Environment</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Organic Farming</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Environmental Nanotechnology</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PSEVS403</td>
<td>I</td>
<td>Understanding sustainable development</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Business strategies and sustainability</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Sustainable urban development</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Sustainability in practice</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PSEVS404</td>
<td>I</td>
<td>Introduction to principles of Environment Management</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Environment Management Systems and Life Cycle Assessment</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Environmental Audit and Environmental Economics</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Environmental Design(ED) and Modeling</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Practicals

<table>
<thead>
<tr>
<th>Course</th>
<th>TOPIC</th>
<th>Credits</th>
<th>L / Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSEVS4P1</td>
<td>Practicals based on PSEVS401</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PSEVS4P2</td>
<td>Practicals based on PSEVS402</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PSEVS4P3</td>
<td>Practicals based on PSEVS403</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PSEVS4P4</td>
<td>Practicals based on PSEVS404</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>08</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>24</td>
<td>32</td>
</tr>
</tbody>
</table>
SEMESTER -III

PSEVS 301: Advanced Pollution Control Technology

Unit I: Water and Wastewater Pollution Control

- General scheme for the treatment of water for drinking purpose.
- Water Treatment: UV, H₂O₂, Ozonization, chemical precipitation, disinfection, adsorption, softening, desalinization / demineralization, membrane processes.
- Biological treatment processes for wastewater - **aerobic processes**: Suspended floc type - the activated sludge processes. Extended aeration, Aerated lagoons, Waste stabilization ponds, rotating biological contact system, the trickling filter process. **Anaerobic processes**: Flow through systems and contact systems. UASB reactors and modifications. Sludge types, treatment and disposal. Processing of sludges - conditioning, thickening, dewatering, drying, incineration and disposal.
- Concept of common effluent treatment plant (CETP) their importance and advantages, role in wastewater treatment. Unit processes involved. Effluent discharge standards, industry specific minimum and national standards.

Unit II: Air Pollution Control

15 L (1 Credit)
• Treatment Processes for other gaseous pollutants: Odour, VOCs, oxides of sulphur and nitrogen emissions.
• Indoor air quality management, principles and control measures, steps for improving indoor air quality.
• Auto-exhausts, its components. Control of auto-exhausts emissions. Emission specific control options, use of after burners, engine modifications / tuning; importance of good maintenance and driving habits.

Unit III: Hazardous and Radioactive Waste Management 15 L (1 Credit)

• Radioactive waste: sources, classification, health and safety aspects. Control and Management of radioactive wastes.

Unit IV: Biomedical Waste and Electronic (E-Waste Management) 15 L (1 Credit)

• Biomedical Waste: Definition, Sources of generation, categories, colour coding system for segregation, transportation specifications, treatment methods: Incineration, Microwave, Plasma Pyrolysis, Hydroclave etc. Treatment and disposal of Plastic waste, Treatment and disposal of metal sharps. Biomedical Waste (Handling and Management) Rules, 1998
• E-Waste: Sources of generation, categories, segregation, transportation, treatment methods: Plastic waste treatment and disposal. E-Waste (Handling and Management) Rules 2011

TEXTS/REFERENCES

2. Water Supply & Sanitary Engineering: G.S. Birdie
7. Water Pollution: V. P. Kudesia, Pragati Prakashan, Meerut.
SEMESTER -III

PSEVS 302

Instrumentation and Biostatistics

Unit I: Environmental Monitoring and sampling 15 L (1 Credit)

- Concepts of environmental monitoring and its significance.
- Methods of physical characterization of samples.
- Sampling of air, water and soil: Protocol and methods of sampling, sampling devices, Preservation, storage and processing of air, water and soil samples

Unit II: Instrumental methods of environmental analysis- I 15 L (1 Credit)

- Conductometry, Potentiometry, Voltammetry: Theory, instrumentation and applications.
- Conventional microscopy and Scanning electron microscopy.
- Hyphenated techniques for analysis – GC-MS, HPTLC, GC-AES. Electrophoresis: Theory, classification, instrumentation and applications.

Unit III: Instrumental methods of environmental analysis- II 15 L (1 Credit)

- Principle, instrumentation and environmental applications of Neutron Activation Analysis, X-Ray Fluorescence, X-Ray Diffraction, Thermogravimetry.
- Continuous monitoring analysis – fluorescent analyzer for SO₂, chemiluminescent analyzer for NOₓ, NDIR for CO, Flow injection analyzer.

Unit IV: Statistical Aspects 15 L (1 Credit)

- Collection, classification and tabulation of data. Essentials of good tabular form. Preparation of one-way and two-way frequency tables. Diagrammatic and graphical representation of data (data bar, pie, picto and histograms, frequency polygons), frequency curves and cumulative curves.
- Measures of central tendency and dispersion: mean, median, mode, range, standard and relative deviation, coefficient of variation, skewness, kurtosis, confidence limits and confidence intervals and normal distribution curve, Analysis of variance one way and two way classification, probit analysis.
- Accuracy, precision and errors: Classification, Minimisation of errors, Rejection of data. Z, t, F, and chi-square tests.
- Correlation and Regression: Pearson’s coefficient, Spearman’s coefficient, regression lines and their use. Curve fitting.
- Probability: Exclusive and independent events, addition and multiplication theorems, dependent events and conditional probability.
TEXTS/REFERENCES

4. Roger Reeve,Introduction to Environmental Analysis, John Wiley & Sons Ltd,2002

SEMESTER -III

PSEVS 303

Environmental Toxicology

Unit I: Basic concepts of Eco-toxicology 15 L (1 Credit)

- Introduction to ecotoxicology, Principles of toxicology, scope of toxicology.
- Types of toxic substances - degradable and non-degradable. Factors influencing toxicity, drug toxicity.
- Biochemical basis toxicity – mechanism of toxicity and receptor mediated events, acute and chronic toxicity.
- Sigmoid relationships, Corollary of toxicology. Influence of ecological factors on the effects of toxicity.

Unit II: Toxicants in the Environment 15 L (1 Credit)

- Toxic substances in the environment, their sources and entry routes.
- Transport of toxicants by air and water: Transport through food chain - bioaccumulation and biomagnification of toxic materials in food chain.
- Toxicology of major pesticides- biotransformation, biomonitoring, programs and parameters of biomonitoring, concept of bioindicator, bioindicator groups and examples.
- Environmental impacts of pesticides: Physiological and metabolic effects on flora and fauna.

Unit III: Evaluation of toxicity 15 L (1 Credit)

- Methods used to assess toxicity classification of toxic materials.
- Concepts of Bioassay- types, characteristics. Importance and significance of bioassay,
Microbial bioassay for toxicity testing, Bioassay test models and classification.

- Threshold limit value, LC50 LD50
- Toxicity Testing, Concept of Dosimetry: lethal, sub-lethal & chronic tests
- Dose response curves

Unit IV: Organ toxicity

- Hepatotoxicity: Common examples of hepatotoxicants, injuries caused to liver
- Nepherotoxicity: Common examples of nepherotoxicants, injuries caused to kidney
- Pulmonary toxicity: Common examples of pulmonary toxicants, injuries caused to lungs.
- Neurotoxicity: Common examples of neuro toxicants, injuries caused to nervous tissues.

TEXTS/REFERENCES

1. Principles of Environmental Toxicology: I. C. Shaw and J. Chadwick; Taylor&Francis ltd
2. Basic Environmental Health (2001): Annalee Yassi, Tord Kjellstom, Theo de Kok, Tee Guidotti
3. Environmental Health: Monroe T. Morgan
8. Environmental pollution and Toxicology by Meera Asthana and Astana D.K., Alka printers, 1990. 3. Toxicology, by A. Sood, Sarup and sons New Delhi, 1999
SEMESTER -III

PSEVS304

Industrial Hygiene and Chemical Safety

Unit I: Industrial Hygiene

• Introduction, definition, scope, significance and applications.
• Occupational environmental stresses i.e Physical, stresses – Noise, vibration, illumination, ventilation, heat stresses, Chemical stresses: Toxic chemicals, hazardous chemicals. Flammable chemical, explosive chemicals. etc. Inhalation and ingestion risks.
• Airborne Chemicals: Dust or aerosols (respirable and non respirable, inhalable and total dust), gases, fumes, vapours, mist and smoke.
• Concept of threshold limiting values(concentration), TLVs, time weighted averages (TWAs), short term exposure limits (STELs), minimal national standards(MINAS), International and national regulatory agencies like ACGIH, OSHA.

Unit II: Industrial Work Environment

• Notifiable Diseases: Pneumoconiosis, Silicosis, Asbestosis, Bagassosis, Byssiniosis.
• Work environment control measures: Substitution, isolation, ventilation, local exhaust system and engineering control methods.

Unit III: Disaster Management and Risk Assessment

• Introduction , definitions, Natural Hazards, nature, causes impacts and occurrences. Earthquakes, volcanic activity, landslides, cyclones, floods, draughts, forest fires; their Mitigation.
• Industrial and technological hazards; types and causes of industrial accidents: fire, explosion, toxic release and dispersion.
• Disaster management: Components of disaster management plan on-site and off-site emergency plans.
• Technical hazards control system- incident reduction, incident management

Unit IV: Safety

Techniques of hazards assessment: PHA, HAZOP, HAZAN, MCAA
- Precautions in the processes and operations involving explosives, flammables, toxic substances, dusts, vapours, cloud formation and combating.
- Safety precautions for transportation for hazardous chemicals. Handling and storage of hazardous chemicals. Safety in pipelines and colour coding.
- Risk assessment and on site and off site emergency planning. Safety audit in chemical industry. Accidents and unusual occurrences reporting.
- Respiratory personal protective equipment (RPPE) & non respiratory personal protective equipment (NRPPE): head protection, ear protection, face and eye protection, hand protection, foot protection and body protection. Quality control of protective equipments.

TEXTS/REFERENCES

2. Industrial Hygiene Reference And Study Guide- Allan K. Fleeger, Dean Lillquist, AIHA, 01-May-2006
A. **Minor Experiments**

1. Determination of heavy metals (Fe/Cu) by spectrophotometric methods
2. Removal of suspended solids by sand filter method.
3. Detection/estimation of Cr (VI) in presence of Cr (III)
4. Estimation of mixed liquor suspended solids (MLSS) and Sludge Volume Index (SVI) in activated sludge.

B. **Major Experiments**

1. Jar Test (removal of suspended solids by coagulation, e.g. use of alum).
2. Waste water analysis for pH, conductivity, TDS, DO, COD, BOD, alkalinity, chloride and hardness.
3. Estimation of fluoride in waste samples by spectrophotometry.

PSEVSP302

Instrumentation and Biostatistics

A. **Minor Experiments**

1. Estimation of Chloride in water sample by conductometric titration.
2. Estimation of Fe \(^{+2}\) by potentiometric titration.
3. Determination of mean, median, mode, geometric mean, range, quartile using a given data
4. Determination of standard deviation, variance, coefficient of variation, skewness, kurtosis using a given data

B. **Major Experiments**

2. Determination Pesticides in soil/plants by GC-MS.
3. Analysis of a given data by t-test/f test,
4. Analysis of a given data by z test /Annova
PSEVSP303
Environmental Toxicology

A. Minor Experiments
1. Study of instruments and equipment used in the Microbiology Laboratory.
2. Enrichment and Isolation of anaerobic bacteria
3. Isolation and Enumeration of microorganisms from soil
4. Effect of Heavy Metal toxicants on the behaviour pattern of earthworm

1. Major Experiments
1. Effect of effluents containing heavy metals on germination of groundnut.
2. Determination of LC50.
3. Effect of different concentrations of any 2 heavy metals on growth of microorganisms

PSEVSP304
Industrial Hygiene and Chemical Safety

A. Minor Experiments
1. Preparation of Material Safety Data Sheet for some common chemicals.
2. To neutralize the given sample using NaOH / HCL / CaCO3
3. Determination of CO2 from the atmosphere by volumetric method in a workplace Environment.
4. Estimate Noise Levels and Determine L10, L50, L90 by histogram method.

B. Major Experiments
1. Air sampling of gases (sulphur dioxide, nitrogen dioxide, carbon disulphide, carbon monoxide etc.) and analysis by UV-Visible spectrophotometer.
2. Estimation of sulphur in coal and calculation of release of SO2 on combustion of per ton of coal.
3. Enlisting the characteristics, advantages and disadvantages of PPE and NRPPE of any industry.
4. Preparation of DMP for nuclear power plant, petrochemical industry, fertilizer plant, hydropower station, chemical industry, thermal power plant, textile mill, metallurgical industry
SEMESTER -IV
PSEVS401
Eco Technology

Unit I: INTRODUCTION TO ECOTECHNOLOGY 15 L (1 Credit)

- Definition, Principles and Concept of Ecotechnology, Why Ecotechnology and Applications of Ecotechnology.
- Appropriate technology for rural environment: Gandhian philosophy: swadeshi movement, concept & definition, characteristic features of appropriate technologies, an account of various technologies developed for rural people- Biogas schemes for rural development, solar cells, solar cooker, solar heaters, smokeless chulas, Biogas stoves, community Biogas plant.

Unit II: SANITATION - PHYTOSANITATION AND GREEN INHIBITORS 15 L (1 Credit)

- Meaning, concept and importance of SPS, in reference to WTO-SRS Agreement, important phytosanitation technologies-HBPST,TDC,SPS committee-Who and What they do, the ten commandments of SPS agreement of WTO.
- Green inhibitors: Factors pertaining to metal samples, Inhibitors in use, Cooling systems, Processing with acid solutions, Corrosion ,Problems in oil industry, Corrosion inhibition in the mining industry, Atmospheric corrosion inhibition mechanisms, Standardized Environmental testing, Hybrid coating & corrosion inhibitors, Environmental green inhibitors, Industrial application of corrosion inhibition.

Unit III: CLIMATE CHANGE MITIGATION AND CARBON SEQUESTRATION 15 L (1 Credit)

- Carbon related definitions C-pool, C-stock, C-Flux, C-sink, C-source, sequestration/uptake.
- A brief understanding of the Clean Development Mechanism (CDM) to combat CC, Developing C market for combating CC, how India can benefit from CDM projects.
- Development of C-sequestration projects their modalities & procedures- reducing emissions from degradation and deforestation (REDD and REDD+),International efforts in combating global warming & CC.A brief understanding of UNFCCC (Kyotoprotocol)NATCOM, IPCC,CBD,UNCCD,world heritage conventions , UN forum on forests etc.

Unit IV: RESTORATION Ecology & REMEDIATION TECHNOLOGY 15 L (1 Credit)

- Definitions, aims and objectives, principles, concept & strategies (long term vs short term), physical chemical & biological restoration, role of ecological principles in restoration, holistic approach in restoration.
- Greenness improvement & planting technologies, bamboo forest maintenance, biotopes, recycled water technology, soil & ground water contamination survey & cleaning technologies.
TEXTS/REFERENCES

4. Green Corrosion Inhibitors by V.S.Sastri

SEMESTER -IV

PSEVS402

Environmental Biotechnology and Nanotechnology

Unit I: Environmental Biotechnology 15 L (1 Credit)

- Basic Concept, Brief account of the structure and functions of DNA and RNA, Recombinant DNA Technology, Tools in rDNA Technology.
- Transgenic Plants, Insect Tolerant and Herbicide Tolerant Plants, Environmental Impact of Transgenic Plants, Genetically Modified Organism (GMOs) Impact on the Environment, Molecular Probes in Environmental Monitoring.
- Phytoremediation- Approaches, Technical Considerations, Types of Phytoremediation, Factors influencing Phytoremediation, Uptake and Translocation, Enzymatic Transformation, Detoxification and Tolerance for Heavy Metals.

Unit II: Biotechnology in Protection and Conservation of the Environment 15 L (1 Credit)

- Degradation of Xenobiotic compounds, Microbial degradation of surfactants, Biological Odorization, Bioleaching- *Thiobacillusferroxidant* in leaching,
- Metal recovery by Microbial Accumulation, Biosensors in Environmental Monitoring and Analysis, Biopolymers, Bioplastics
- Biocomposting: Aerobic composting methods such as Windrow, Static pile and In-vessel methods for composting, Preparation of Biocompost, Particle size, Carbon to Nitrogen ratio, Temperature, Aeration, pH Control, Anaerobic Composting Fermentation/Digestion: Role of Hydrolyzing Microbes, Acetogens and Methanogens, Marketing of Biocompost
Unit III: Organic Farming

- **Biopesticides:** Introduction, Biological Insecticides, Properties of *Bacillus thuringiensis*, Microbial Pesticides, Entomopathogenic Fungi or Viruses, Entomopathogenic Nematodes, Biochemical Pesticides, Plant-Incorporated Protectants (PIPs) like GM plants etc., Insect Pheromones and other Semiochemicals, Applications of Biopesticides.

- **Biofertilizers:** Classification, Nitrogen Fixation (Bacterial, with Blue Green Algae, VAM etc.), Symbiotic Nitrogen Fixers *Rhizobium sp.*, Non-symbiotic, Free Living Nitrogen Fixers *Azotobacter, Azospirillum* etc., BGA Inoculants *Azolla-Anabaena*, Phosphate Solubilizing Microorganisms (PSM) *Bacillus Pseudomonas, Penicillium Aspergillus* etc., Mycorrhiza, Cellulolytic microorganisms and Organic fertilizers.

Unit IV: Environmental Nanotechnology

- Nanotechnology and its Applications in Agriculture and Food Industry, Nanotechnology: Materials and Manufacture, Nanotechnology for Renewable Energy,
- Nanomaterials-Remediation, Nano Membranes, Nano Fibers, Nano Clays Adsorbents, Zeolites, Nano Catalysts, Carbon Nano tubes,

TEXTS/REFERENCES

2. *Environmental Biotechnology - Theory and Application* – M.H.Fulekar: CRC Press and Science Publisher, USA
4. *Bioinformatics – Application in Life & Environmental Sciences* - M.H.Fulekar: Springer Publisher
5. Environmental Biotechnology- Alan Scragg, Oxford University Press.

SEMESTER -IV
PSEVS403
Sustainable Management

Unit I: Understanding sustainable development 15 L (1 Credit)

• Definition and dimensions of sustainability, The ecological footprint and carrying capacity
• National Action Plan on Climate Change.
• National sustainable development strategies in India: Twenty point program of Govt. of India, Key programs introduced to increase agricultural productivity and profitability. Policies and programs relevant to sustainable development in India, key legislations relative to sustainable development.
• Strategies for promoting sustainable development-International Trade-TRIPS, IPR; finance, technology, Science and education
• Resistances to the concept and some alternative approaches, Important current issues and areas of debate in relation to sustainable development.

Unit II: Business strategies and sustainability 15 L (1 Credit)

• Business and sustainability-Concept of responsible business, CERES (coalition for environmentally responsible economics) principles and blended value.
• Principles of sustainable development in business planning and management
• Triple Bottom Line approach in sustainable business planning and development,
• Green Business profiles- The Body Shop, General Electric, Toyota etc.
• Indicators for sustainability: introduction to Nature’s Living Planet Index developed by WWF, Happy Planet Index developed by New Economics Foundation, Gross domestic product, Human development index, Dow Jones sustainability index.
Unit III: Sustainable urban development 15 L (1 Credit)

- Urbanization and its impact on Environment, Rural and Urban planning for sustainable development
- Green city challenges - Ecological footprint, Principles of creating eco cities with two examples.
- Architecture - Eco industrial parks, Urban farming, Green roofs, Green Building- LEED certification, with two examples, walkable Urbanism, Xeriscaping,
- Transportation: improved public transport, car free cities, emphasis on proximity, zero emission transport, Diversity in modes of transportation
- Green city solutions - bicycle city, car-free day campaign, green belt, compact development, carpooling, bus rapid transit, parks, greenways and open space, traffic calming

Unit IV: Sustainability in practice 15 L (1 Credit)

- Current environmental Issues in India, Narmada Dam, Tehri, Almetti Dam, waste land & their reclamation, desertification, water crises, wetland conservation.
- Watershed management: Definition, Concepts, principals and classification in watershed management. Rainfall and runoff, water balance approach, water budgeting, topographic surveying, water conservation and harvesting methods – importance and techniques, artificial recharge of groundwater
- NGOs – characteristics and role of NGOs in sustainable development, Principles for NGOs, NGO-Community relations, NGO-Government relations, Some Indian NGOs working for saving environment

TEXTS/REFERENCES

SEMESTER -IV
PSEVS404
Paper –ENVIRONMENTAL MANAGEMENT

Unit I: Introduction to principles of Environment Management 15L (1 Credit)

Resources and wealth-meaning, types of resources and its exploitation, Wealth-meaning, distinction between wealth and resources, optimum conversion of resources into wealth. Definition, Goals of Environment Management, significance of environmental management, scope of environmental management, Development and environmental linkages, Environmental concerns in India, Actions For Environmental Protection Indian initiatives- National committee on Environmental Planning and Coordination, The Tiwari committee, Department of Environment etc, Ministry of Environment & Forest, Changes in Environmental Management Practices, Introduction Environmental Management Tools

Unit II: Environment Management Systems and Life Cycle Assessment 15L (1 Credit)

Procedure for LCA: Defining goal and scope, preparation of life cycle inventory, assessment of environmental impact, Areas for Improvement and Interpretation. Methods to assess impact using methods like ecoindicator-95
Unit III: **Environmental Audit and Environmental Economics**15L (1 Credit)

Introduction to environmental audit, Types of environmental audits: objectives-based and client-driven types. General audit methodology and audit process: Introduction, the basic steps of an environmental audit program. Element of audit process, audit protocols (why, who, what and how). Waste audits and pollution prevention assessments, Waste minimization audit examples. Site assessment and liability audit, Introduction to macro economics, microeconomics, environmental economics, difference between natural resource economics and environmental economics. Valuation of environment impacts: types of economic values, approach, valuation techniques, valuing environmental amenities. Environmental Costs and benefits analysis, examples of cost benefit analysis of technology or process, Introduction to Market based instruments and command control instrument for pollution control.

Unit IV: **Environmental Design (ED) and Modeling**15L (1 Credit)

Introduction to Environmental Monitoring and Modeling, Definition of model, Need of modeling, water quality models-surface and ground water, Air Quality Models-Dispersion and receptor models

TEXT / REFERENCES

- Cattanach, R.E., Hodrieth J.M., Reinke D.P., Sibik L.K., Environmentally Conscious Manufacturing from Design to Production to Labelling and Recycling, National Centre for Manufacturing Sciences (NCMS), Irwin Publications, 1995
- Fundamental concepts of Environmental chemistry, 2009, G.S. Sodhi, Narosa Publishers
PSEVSP401

Eco Technology

A. Minor Experiments
1. Determination of Root density
2. Determination of Fertility rejuvenation index
3. Determination of Translocation factor by phytoremediation.
4. Case study on Tehri project, Silent Valley Project, Narmada Dam Project, Biopiracy, Ecodisaster of deforestation

B. Major Experiments
1. Tracing of watershed and their morphological features from toposheets.
2. Interpretation of Aerial photographs/satellite imageries/GIS data.
3. Problems in water budgeting.
4. Designing structures for water conservation and harvesting based on field visits.

PSEVSP402

Environmental Biotechnology and Nanotechnology

Minor Experiments
2. Phytoremediation of Heavy Metals by Green Plants in Aquatic/ Soil Environment.

Major Experiments
1. Estimation of DNA by spectrophotometer
2. Determination of molecular weight of DNA by electrophoresis.
3. Determination of coliforms by Membrane Filter Technique
4. Determination of Streptococcus faecalis.
PSEVSP403

Sustainable Management

Minor Experiments

1. To perform Water/Energy audit in the house/college building /society/laboratory
2. To study sustainability report of major business groups/environment compliance report for a company.
3. Report on Visit to NGO/Biomedical waste management site/hazardous waste Management/Pollution control facility of any industry.

Major Experiments

1. Report on study tour to the following places
 - Lakes/rivers/estuary/marine ecosystem.
 - National Park/Sanctuary
 - Mangrove Ecosystem/Open Cast Mining/Agricultural field.
 - Pollution Control Board/Research Institute/Meterology Department.

PSEVSP404

Environmental Management

Project work : 50 MARKS
Student will submit their independent project work at the end of semester IV. Assessment of the project and internship will be based on the submitted M. Sc. project report, seminar and viva-voice examination.

Report on Project work : 30 MARKS
The Internship/project report submitted by the student and the evaluation report by the externalexaminer.

Project Evaluations:20 MARKS
(Viva-voice + Presentation)

Texts/References:
3. Chemical and biological methods for water pollution studies By R.K. Trivedi
5. Soil and air analysis by S.K. Maiti.
1. The candidate is expected to submit a journal certified by the head of the department or institution at the time of the practical examination.

2. A candidate will not be allowed to appear for the practical examination unless he or she produces a certified journal or a certificate from the head of the institution or department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.

3. Use of non-programmable calculators is allowed both at the theory and the practical examination.