UNIVERSITY OF MUMBAI

Syllabus for the S.Y.B.Sc.
Program: B.Sc.
Course: Information Technology

(Credit Based Semester and Grading System with effect from the academic year 2012–2013)
<table>
<thead>
<tr>
<th>Courses</th>
<th>Theory Code</th>
<th>Practical Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic and Discrete Mathematics</td>
<td>USIT301</td>
<td>USIT3P1</td>
</tr>
<tr>
<td>Computer Graphics</td>
<td>USIT302</td>
<td>USIT3P2</td>
</tr>
<tr>
<td>Advanced SQL</td>
<td>USIT303</td>
<td>USIT3P3</td>
</tr>
<tr>
<td>Object Oriented Programming with C++</td>
<td>USIT304</td>
<td>USIT3P4</td>
</tr>
<tr>
<td>Modern Operating Systems</td>
<td>USIT305</td>
<td>USIT3P5</td>
</tr>
</tbody>
</table>

CLASS: B. Sc (Information technology) | Semester – III

<table>
<thead>
<tr>
<th>Theory Code : USIT301</th>
<th>Subject : Logic and Discrete Mathematics</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lectures - 5</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

Unit – I

Set Theory: Fundamentals - Sets and subsets, Venn Diagrams, Operations on sets, Laws of Set Theory, Power Sets and Products, Partition of sets, The principle of Inclusion-Exclusion.

Logic: Propositions and Logical operations, Truth tables, Equivalence, Implications, Laws of Logic, Normal forms, Predicates and quantifiers, Mathematical Induction

8 Lectures

Unit- II

Relations, digraphs and lattices: – Product sets and partitions, relations and digraphs, paths in relations and digraphs, properties of relations, equivalence and partially ordered relations, computer representation of relations and digraphs, manipulation of relations, Transitive closure and Warshall’s algorithm, Posets and Hasse Diagrams, Lattice.

8 Lectures

Unit-III

Functions and Pigeon Hole Principle: Definitions and types of functions: injective, surjective and bijective, Composition, identity and inverse, Pigeon hole principle.

8 Lectures

Unit-IV

Graphs and Trees: Graphs, Euler paths and circuits, Hamiltonian paths and circuits, Planer graphs, coloring graphs, Isomorphism of Graphs.

Trees: Trees, rooted trees and path length in rooted trees, Spanning tree and Minimal Spanning tree, Isomorphism of trees, Weighted trees and Prefix Codes.

8 Lectures

Unit -V

Algebraic Structures: Algebraic structures with one binary operation – semi groups, monoids and groups, Product and quotient of algebraic structures, Isomorphism, homomorphism, automorphism, Cyclic groups, Normal sub group, codes and group codes, Algebraic structures with two binary operations – rings, integral domains and fields. Ring homomorphism and Isomorphism.

8 Lectures

Unit-VI

Generating Functions and Recurrence relations: Series and Sequences, Generating Functions, Recurrence relations, Applications, Solving difference equations, Fibonacci.

8 Lectures
Books:
Discrete mathematical structures by B Kolman RC Busby, S Ross PHI Pvt. Ltd.
Discrete mathematical structures by RM somasundaram (PHI) EEE edition

References:
Discrete structures by Liu, TATAMCGRAW-HILL
Digital Logic John M Yarbrough Brooks/cole, Thompson Learning
Discrete Mathematics and its Applications, Kenneth H. Rosen, TATAMCGRAW-HILL
Discrete Mathematics, Schaum’s Outlines Series, Seymour Lipschutz, Marc Lipson, TATAMCGRAW-HILL

Practical Code : USIT3P1

Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Tutorial: At least three tutorials based on above syllabus must be conducted.

<table>
<thead>
<tr>
<th>CLASS: B. Sc (Information technology)</th>
<th>Semester – III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Code : USIT302</td>
<td>Subject : Computer Graphics</td>
</tr>
<tr>
<td>Periods per week</td>
<td>Lectures - 5</td>
</tr>
<tr>
<td></td>
<td>3 Credits</td>
</tr>
</tbody>
</table>

Unit – I

Scan-Conversion of graphics primitives: Scan-Conversion of a Lines (Digital Differential Analyzer Algorithm, Bresenham’s Line-Drawing Algorithm, Scan-Conversion of Circle and Ellipse (Bresenham’s Method of Circle Drawing, Midpoint Circle Algorithm), Drawing Ellipses and Other Conics.

Unit- II

Two Dimensional Transformation: Introduction to transformations, Transformation Matrix, Types of Transformations in Two-Dimensional Graphics: Identity Transformation, Scaling, Reflection, Shear Transformations, Rotation, Translation, Rotation about an Arbitrary Point, Combined Transformation, Homogeneous Coordinates, 2D Transformations using Homogeneous Coordinates.
<table>
<thead>
<tr>
<th>Unit-III</th>
<th>Three-dimensional transformations, Objects in Homogeneous Coordinates, Three-Dimensional Transformations: Scaling, Translation, Rotation, Shear Transformations, Reflection, World Coordinates and Viewing Coordinates, Projection, Parallel Projection.</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-IV</td>
<td>Viewing and Solid Area Scan-Conversion: Introduction to viewing and clipping, Viewing Transformation in Two Dimensions, Introduction to Clipping, Two-Dimensional Clipping, Point Clipping, Line Clipping, Introduction to a Polygon Clipping, Viewing and Clipping in Three Dimensions, Three-Dimensional Viewing Transformations, Text Clipping. Introduction to Solid Area Scan-Conversion, Inside–Outside Test, Winding Number Method and Coherence Property, Polygon Filling, Seed Fill Algorithm, Scan-Line Algorithm, Priority Algorithm, Scan Conversion of Character, Aliasing, Anti-Aliasing, Halftoning, Thresholding and Dithering.</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>Unit –V</td>
<td>Introduction to curves, Curve Continuity, Conic Curves, Piecewise Curve Design, Parametric Curve Design, Spline Curve Representation, Bezier Curves, B-Spline Curves, Fractals and its applications. Surface Design: Bilinear Surfaces, Ruled Surfaces, Developable Surfaces, Coons Patch, Sweep Surfaces, Surface of Revolution, Quadric Surfaces, Constructive Solid Geometry, Bezier Surfaces, B-Spline Surfaces, Subdivision Surfaces. Visible Surfaces: Introduction to visible and hidden surfaces, Coherence for visibility, Extents and Bounding Volumes, Back Face Culling, Painter’s Algorithm, Z-Buffer Algorithm, Floating Horizon Algorithm, Roberts Algorithm.</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>Unit-VI</td>
<td>Object Rendering: Introduction Object-Rendering, Light Modeling Techniques, Illumination Model, Shading, Flat Shading, Polygon Mesh Shading, Gaurand Shading Model, Phong Shading, Transparency Effect, Shadows, Texture and Object Representation, Ray Tracing, Ray Casting, Radiosity, Color Models. Introduction to animation, Key-Frame Animation, Construction of an Animation Sequence, Motion Control Methods, Procedural Animation, Key-Frame Animation vs. Procedural Animation, Introduction to Morphing, Three-Dimensional Morphing.</td>
<td>8 Lectures</td>
</tr>
</tbody>
</table>

Books:
Mathematical elements of Computer Graphics, David F. Rogers, J. Alan Adams, TATAMCGRAW-HILL
Reference:
Computer Graphics, Donald Hearn and M. Pauline Baker, Prentice Hall of India

Practical Code: USIT3P2

Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Suggested Practical:
Should contain at least 10 programs development in C++. Some Sample practical are listed below.

1. Write a program with menu option to input the line coordinates from the user to generate a line using Bresenham’s method and DDA algorithm. Compare the lines for their values on the line.
2. Develop a program to generate a complete circle based on
 a. Bresenham’s circle algorithm
 b. Midpoint Circle Algorithm
3. Implement the Bresenham’s/DDA algorithm for drawing line (programmer is expected to shift the origin to the center of the screen and divide the screen into required quadrants).
4. Write a program to implement a stretch band effect. (A user will click on the screen and drag the mouse/arrow keys over the screen coordinates. The line should be updated like rubber-band and on the right-click gets fixed).
5. Write program to perform the following 2D and 3D transformations on the given input figure
 a. Rotate through θ.
 b. Reflection
 c. Scaling
 d. Translation.
6. Write a program to demonstrate shear transformation in different directions on a unit square situated at the origin.
7. Develop a program to clip a line using Cohen-Sutherland line clipping algorithm between $(x_1, y_1)(x_2, y_2)$ against a window $(x_{min}, y_{min})(x_{max}, y_{max})$.
8. Write a program to implement polygon filling.
9. Write a program to generate a 2D/3D fractal figures (Sierpinski triangle, Cantor set, tree etc).
10. Write a program to draw Bezier and B-Spline Curves with interactive user inputs for control polygon defining the shape of the curve.
11. Write a program to demonstrate 2D animation such as clock simulation or rising sun
12. Write a program to implement the bouncing ball inside a defined rectangular window.
<table>
<thead>
<tr>
<th>Unit – I</th>
<th>Structured Query Language: Writing Basic SQL Select Statements, Restricting and Sorting Data, Single-Row Functions, Joins (Displaying Data from Multiple Tables), Aggregating Data using Group Functions, Subqueries, Manipulating Data, Creating and Managing Tables, Including Constraints, Creating Views, Creating Other Database Objects (Sequences, Indexes and Synonyms)</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit- II</td>
<td>Advanced SQL: Controlling User Access, Using SET operators, DateTime Functions, Enhancements to Group by clause (cube, Rollup and Grouping), Advanced Subqueries (Multiple column subqueries, Subqueries in FROM clause, Scalar and correlated subqueries), WITH Clause, Hierarchical retrieval,</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>Unit-III</td>
<td>PLSQL: Introduction, Overview and benefits of PL/SQL, Subprograms, types of PL/SQL blocks, Simple Anonymous Block, Identifiers, types of Identifiers, Declarative Section, variables, Scalar Data Types, The %TYPE Attribute, Bind Variables, Sequences in PL/SQL Expressions, Executable Statements, PL/SQL Block Syntax, Comment the Code, Deployment of SQL Functions in PL/SQL, Convert Data Types, Nested Blocks, Operators. Interaction with the Oracle Server, Invoke SELECT Statements in PL/SQL, SQL Cursor concept, Data Manipulation in the Server using PL/SQL, SQL Cursor Attributes to Obtain Feedback on DML, Save and Discard Transactions.</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>Unit-IV</td>
<td>Control Structures: Conditional processing using IF Statements and CASE Statements, Loop Statement, While Loop Statement, For Loop Statement, the Continue Statement, Composite Data Types: PL/SQL Records, The %ROWTYPE Attribute, Insert and Update with PL/SQL Records, INDEX BY Tables, INDEX BY Table Methods, Use INDEX BY Table of Records, Explicit Cursors, Declare the Cursor, Open the Cursor, Fetch data from the Cursor, Close the Cursor, Cursor FOR loop, The %NOTFOUND and %ROWCOUNT Attributes, the FOR UPDATE Clause and WHERE CURRENT Clause, Exception Handling, Handle Exceptions with PL/SQL, Trap Predefined and non-predefined Oracle Server Errors, User-Defined Exceptions, Propagate Exceptions, RAISE_APPLICATION_ERROR Procedure,</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>Unit – V</td>
<td>Stored Procedures: Create a Modularized and Layered Subprogram Design, the PL/SQL Execution Environment, differences between Anonymous Blocks and Subprograms, Create, Call, and Remove Stored Procedures, Implement Procedures Parameters and Parameters Modes, View Procedure Information, Stored Functions and Debugging Subprograms, Create, Call, and Remove a Stored Function, advantages of using Stored Functions, the steps to create a stored function, Invoke User-Defined Functions in SQL Statements, Restrictions when calling Functions, Control side effects when calling Functions, View Functions Information, debug Functions and Procedures, Packages, advantages of Packages, components of a Package, Develop a Package, enable visibility of a Package’s Components, Create the Package Specification and Body using the SQL CREATE Statement and SQL Developer, Invoke the Package Constructs, View the PL/SQL Source Code using the Data Dictionary, Deploying Packages, Overloading Subprograms in PL/SQL, Use the STANDARD Package, Use Forward Declarations, Implement Package Functions in SQL and Restrictions, Persistent State of Packages, Persistent State of a Package Cursor, Control side effects of PL/SQL Subprograms, Invoke PL/SQL Tables of Records in Packages</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Unit – VI</td>
<td>Dynamic SQL: The Execution Flow of SQL, Declare Cursor Variables, Dynamically Executing a PL/SQL Block, Configure Native Dynamic SQL to Compile PL/SQL Code, invoke DBMS_SQL Package, Implement DBMS_SQL with a Parameterized DML Statement, Dynamic SQL Functional Completeness, Triggers, the Trigger Event Types and Body, Business Application Scenarios for Implementing Triggers, Create DML Triggers using the CREATE TRIGGER Statement and SQL Developer, Identify the Trigger Event Types, Body, and Firing (Timing), Statement Level Triggers and Row Level Triggers, Create Instead of and Disabled Triggers, Manage, Test and Remove Triggers. Creating Compound, DDL and Event Database Triggers, Compound Trigger Structure for Tables and Views, Compound Trigger to Resolve the Mutating Table Error, Comparison of Database Triggers and Stored Procedures, Create Triggers on DDL Statements, Create Database-Event and System-Events Triggers, System Privileges Required to Manage Triggers</td>
<td></td>
</tr>
</tbody>
</table>

Books:
Murach’s Oracle SQL and PLSQL by Joel Murach, Murach and Associates.
Practical Code : USIT3P3

Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.
Suggested Practical:
Should contain at least 10 programs. Some sample practicals are listed below.

1. **Practical 1: Select queries and joins**
 a. Select queries on single table using alias, where and order by clause.
 b. Select queries on single table using aggregate functions and group by clause.
 c. Querying data from multiple tables using all types of joins.

2. **Practical 2: Subqueries, DML and DDL**
 a. Querying single and multiple tables using subqueries.
 b. Manipulating data (Insert, update and delete)
 c. Creating simple tables and tables with constraints.

3. **Practical 3: Creating database objects, Controlling user access and using set operators**
 b. Granting and revoking privileges on user objects.
 c. Using set operators, date-time functions, roll up, cube and grouping sets.

4. **Practical 4: Working with advanced subqueries and WITH clause**
 a. Multiple column subqueries, subqueries in from clause,
 b. Scalar subqueries and correlated subqueries,
 c. WITH Clause and hierarchical retrieval.

5. **Practical 5: Basic PL/SQL, INDEX BY tables, PL/SQL Record and FOR loop**
 a. Creating anonymous PL/SQL blocks.
 b. Define, create, and use INDEX BY tables and a PL/SQL record.
 c. Process a number of rows from a table and populate another table with the results using a cursor FOR loop.

6. **Practical 6: Cursors, Exceptions and procedures issuing DML and query commands**
 a. Cursors with parameters to process a number of rows from multiple tables.
 b. Create exception handlers for specific situations.
 c. Create procedures that issue DML and query commands.

7. **Practical 7: Functions and Stored Procedures**
 a. Creating and invoking functions from SQL statements.
 b. Creating and invoking stored procedures.
 c. Re-create the source code for a procedure and a function.

8. **Practical 8: Working with packages**
 a. Create package specifications and package bodies. Invoke the constructs in the packages.
 b. Create a package containing an overloaded function.
 c. Create a one-time-only procedure within a package to populate a PL/SQL table.

9. **Practical 9: Working with Large Objects and triggers**
 a. Create a table with both BLOB and CLOB columns. Use the DBMS_LOB package to populate the table and manipulate the data.
 b. Create statement and row triggers.
 c. Create procedures that will be invoked from the triggers.

 a. Create instead of triggers for views.
 b. Implement a number of business rules. Create triggers for those rules that should be implemented as triggers. The triggers must execute procedures that that are placed in a package.
 c. Use the DEPTREE_FILL procedure and the IDEPTREE view to investigate dependencies in your schema. Recompile invalid procedures, functions, packages, and views.

<table>
<thead>
<tr>
<th>CLASS: B. Sc (Information technology)</th>
<th></th>
<th>Semester – III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Code : USIT304</td>
<td>Subject : Object Oriented Programming with C++</td>
<td></td>
</tr>
<tr>
<td>Periods per week</td>
<td>Lectures - 5</td>
<td>3 Credits</td>
</tr>
<tr>
<td>Unit – I</td>
<td>Introduction to OOPs: Need object oriented programming, comparison of procedural and object oriented approach, characteristics of OOPs – object, classes, polymorphism, inheritance, reusability, data hiding and abstraction, applications of OOPs</td>
<td></td>
</tr>
<tr>
<td>Unit- II</td>
<td>Classes and Objects: Class declaration, constructors, constructor initialization lists, access functions, private member functions, the copy constructor, the class destructor, constant objects, structures, pointers to objects, static data members, static function members</td>
<td></td>
</tr>
<tr>
<td>Unit-III</td>
<td>Operator Overloading: overloading the assignment operator, the this pointer, overloading arithmetic operators, overloading the arithmetic assignment, operators, overloading the relational operators, overloading the stream operators, conversion operators, overloading the increment and decrement operators, overloading the subscript operator</td>
<td></td>
</tr>
<tr>
<td>Unit-IV</td>
<td>Composition and Inheritance: inheritance, protected class members, overriding and dominating inherited members, private access verses protected access, virtual functions and polymorphism, virtual destructors, abstract base classes File Handling: Classes for file stream operations, opening and closing a file, detecting end of file, file modes, file pointers and their manipulations, sequential input and output operations, random access, file operations error handling, command line argument</td>
<td></td>
</tr>
<tr>
<td>Unit –V</td>
<td>Strings and Streams: the string class interface, the constructors and destructor, the copy constructor, the assignment operator, the addition operator, an append operator, access functions, the comparison operators, stream operators, stream classes, the ios class, ios format flags, ios state, variables, the istream and ostream classes, unformatted input functions, unformatted output functions, stream manipulators</td>
<td></td>
</tr>
<tr>
<td>Unit-VI</td>
<td>Templates and Iterators: function templates, class templates, container classes, subclass templates, passing template classes to template parameters, iterator classes Libraries: the standard C++ library, proprietary libraries, contents of the standard c headers, string streams, file processing, the standard template library</td>
<td></td>
</tr>
</tbody>
</table>
Books:
SCHAUM’S OUTLINE OF THEORY AND PROBLEMS of PROGRAMMING WITH C++
JOHN R. HUBBARD, TATAMCGRAW-HILL

Reference:
C++ programming, 3rd Edition, Bjarne Stroustrup
C++ Programming, , Robert Lafore,
C++ for Beginners, P. M. Harwani, X-Team Series,

Practical Code : USIT3P4
Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Suggested Practical:
Should contain at least 10 programs. Some sample practicals are listed below.

1 Implement the following
 a. Design an employee class for reading and displaying the employee information, the
 getInfo() and displayInfo() methods will be used respectively. Where getInfo() will be
 private method.
 b. Design the class student containing getData() and displayData() as two of its methods
 which will be used for reading and displaying the student information respectively. Where getData() will be private method.
 c. Design the class Demo which will contain the following methods: readNo() ,factorial() for calculating the factorial of a number, reverseNo() will reverse the given number, isPalindrome() will check the given number is palindromic, isArmstrong() which will calculate the given number is armStrong or not. Where readNo() will be private method.

2 Implement the following
 a. Write a friend function for adding the two complex numbers, using a single class.
 b. Write a friend function for adding the two different distances and display its sum,
 using two classes.
 c. Write a friend function for adding the two matrix from two different classes and display its sum.

3 Implement the following
 a. Design a class Complex for adding the two complex numbers and also show the use of
 constructor.
 b. Design a class Geometry containing the methods area() and volume() and also
 overload the area() function.
 c. Design a class StaticDemo to show the implementation of static variable and static
 function.

4 Implement the following
 a. Overload the operator unary(-) for demonstrating operator overloading.
 b. Overload the operator + for adding the timings of two clocks, And also pass objects as
 an argument.
 c. Overload the + for concatenating the two strings. For e.g “c” + “++” = c++
5. **Implement the following**
 a. Design a class for single level inheritance using public and private type derivation.
 b. Design a class for multiple inheritance.
 c. Implement the hierarchical inheritance.

6. **Implement the following**
 a. Implement the concept of method overriding.
 b. Show the use of virtual function
 c. Show the implementation of abstract class.

7. **Implement the following**
 a. String operations for string length, string concatenation
 b. String operations for string reverse, string comparison,
 c. Console formatting functions.

8. **Implement the following**:
 a. Show the implementation of exception handling
 b. Show the implementation for exception handling for strings
 c. Show the implementation of exception handling for using the pointers.

9. **Show the implementation**
 a. Design a class FileDemo open a file in read mode and display the total number of words and lines in the file.
 b. Design a class to handle multiple files and file operations
 c. Design a editor for appending and editing the files

10. **Show the implementation for the following**
 a. Show the implementation of template class library for swap function.
 b. Design the template class library for sorting ascending to descending and vice-versa
 c. Design the template class library for concatenating two strings

<table>
<thead>
<tr>
<th>CLASS: B. Sc (Information technology)</th>
<th>Semester – III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Code : USIT305</td>
<td>Subject : Modern Operating Systems</td>
</tr>
<tr>
<td>Periods per week</td>
<td>Lectures - 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit – I</th>
<th>Introduction to Operating Systems: OS and Computer System, System performance, Classes of OS, Batch processing, time-sharing, multiprocessing, real time, distributed and modern operating systems, Desktop Systems, Handheld Systems, Clustered Systems, Assemblers, Compilers and Interpreters, Linkers.</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit- II</td>
<td>Operating-System Structures: Operating-System Services, User Operating-System Interface, System Calls, Types of System Calls, System Programs, Operating-System Design and Implementation, Operating-System Structure, Virtual Machines, Operating-System Generation, System Boot.</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>Unit-IV</td>
<td>Memory Management: Memory management without swapping or paging; Swapping, Virtual Memory, Page replacement algorithms, Modeling paging algorithms, Design issues for paging systems, segmentation</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Unit –V</td>
<td>File-System Interface and Implementation: File Concept, File-System Mounting, Free-Space Management, File Sharing, NFS. Mass-Storage Structure: Disk Structure, Disk Management, Swap-Space Management, RAID Structure, Stable-Storage Implementation. Deadlocks, Deadlock detection and recovery, avoidance and prevention</td>
<td></td>
</tr>
</tbody>
</table>

Books:

Modern Operating Systems, Andrew Tanenbaum,

Reference:

Practical Code : USIT3P5

Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Tutorial: At least three tutorials based on above syllabus must be conducted.

Case Studies (Suggested):

a) MS-DOS
b) Windows NT
c) Windows 2008 Server
d) Windows 7
e) Unix
f) Linux
g) OS/2
h) MAC OS
i) Symbian
j) Chrome
k) Android
<table>
<thead>
<tr>
<th>Semester IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses</td>
</tr>
<tr>
<td>Software Engineering</td>
</tr>
<tr>
<td>Multimedia</td>
</tr>
<tr>
<td>Java and Data Structures</td>
</tr>
<tr>
<td>Quantitative Techniques</td>
</tr>
<tr>
<td>Embedded Systems</td>
</tr>
</tbody>
</table>

CLASS: B. Sc (Information technology) Semester – IV

Theory Code : USIT401
Subject : Software Engineering

<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lectures - 5</th>
<th>3 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit – I</td>
<td>An Introduction: To Software, Software Engineering, Software Process, Software Engineering Methods; CASE Tools, Attributes of good software. Socio-technical system: Essential characteristics of socio technical systems, Emergent System Properties, Systems Engineering, Components of system such as organization, people and computers, Dealing Legacy Systems. Critical system: Types of critical system, A simple safety critical system, Dependability of a system, Availability and Reliability, Safety and Security of Software systems</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 Lectures</td>
<td></td>
</tr>
</tbody>
</table>

Books:

Software Engineering, Pankaj Jalote, Narosa Publication

Reference:
Software engineering, A practitioner’s approach, Roger Pressman, TATOMCGRAH-HILL.
Software Engineering by KL James, PHI(2009) EEE edition
Software Engineering principles and practice by WS Jawadekar TATOMCGRAH-HILL

Practical Code : USIT4P1

Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Tutorial: At least three tutorials based on above syllabus must be conducted.

Case Studies (Suggested)
1. Project Initiation and scheduling.
2. Analyzing a system and specifying the requirements
 a. Structured Approach
 b. Object oriented Approach
3. Project Cost Estimation
4. Designing the database design
5. Designing the User interface design
6. Use of testing methodologies
7. Cost Estimation Techniques
8. Cost benefit Analysis
<table>
<thead>
<tr>
<th>Unit – I</th>
<th>Introduction:</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What is multimedia? Defining the scope of multimedia. Applications of multimedia, hardware and software requirements, multimedia database.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit- II</th>
<th>Digital representation:</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, Analog representation, waves, digital representation, need for digital representation, A to D conversion, D to A conversion, relation between sampling rate and bit depth, Quantization error, Fourier representation, pulse modulation. Importance and drawback of digital representation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-III</th>
<th>Text and Image:</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction, Types of text, Font, insertion, compression, File formats. Types of images, colour models, Basic steps for image processing, principle and working of scanner and digital camera, Gamma and gamma correction.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-IV</th>
<th>Audio and Video technology:</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fundamental characteristics of sound, psycho-acoustics, Raster scanning principles, sensors for TV cameras, color fundamentals, additive and subtractive color mixing, Liquid crystal display (LCD), Plasma Display Panel (PDP), file formats</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit –V</th>
<th>Compression and coding:</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What is compression? Need for compression, Types of compression- basic compression techniques- run length, Huffman’s coding, JPEG, zip coding. Overview of Image and Video compression techniques.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-VI</th>
<th>Multimedia presentation and authoring:</th>
<th>8 Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overview, multimedia authoring metaphor, multimedia production, presentation and automatic authoring, Design paradigms and user interface, overview of tools like adobe premier, director, flash and dreamweaver. Barriers to wide spread use.</td>
<td></td>
</tr>
</tbody>
</table>

Books:
Principles of Multimedia by Ranjan Parekh. TATAMCGRAWHILL

Reference:
Multimedia Systems Design by Prabhat K. Andleigh and Kiran Thakrar PHI publication
Multimedia systems by John F. Koegal Buford-Pearson Education.

Practical Code : USIT4P2

Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Tutorial: At least three tutorials based on above syllabus must be conducted.

Mini Project: Develop a multimedia application
Theory Code: USIT403
Subject: Java and Data Structures

Periods per week

<table>
<thead>
<tr>
<th>Periods per week</th>
<th>Lectures - 5</th>
<th>3 Credits</th>
</tr>
</thead>
</table>

Unit – I
Core Java: Features of Java, JVM, Data Types, Variables, and Arrays, Operators, Control Statements, type-casting, Classes, Objects and Methods, Constructor, method overriding, finalize methods.

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Unit- II
Derived concepts: Inheritance, Packages and Interfaces, Exception Handling, String handling, Multithreaded Programming

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Unit-III

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Unit-IV
Data Structures: Complexity and analysis of algorithms – algorithm, time and space complexity, asymptotic notations, Types of data structures, Arrays - Properties of Arrays, Duplicating an Array, sequential search algorithm, binary search algorithm, Stacks- Stack Operations, indexed Implementation, Linked Implementation, , Applications - recursion, Queue - Queue Operations, indexed Implementation, Applications, Circular Queue – insertion, deletion

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Unit –V
Linked Lists – representation of linked list, traversing, searching, insertion, deletion and doubly linked list.

Hash table methods – hashing functions, collision-resolution techniques

Trees- Binary Trees, traversing binary tree, traversing algorithm using stacks, header nodes, threads, binary search trees (insertion and deletion), AVL trees, B trees

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Unit-VI
Heaps – insertion and deletion

Sorting – selection, bubble, merge, tree, radix, insertion

Graphs – graph theory, sequential representation, adjacency matrix, path matrix, Warshall’s algorithm, linked representations, operations, traversing.

<table>
<thead>
<tr>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Books:
- *Core Java for Beginners*, Sharanam Shah and V Shah, The X Team SPD
- *Data Structures*, S Lipschutz, Tata-McGrawhill

Reference:
- *An introduction to data structures with applications*, second edition, Jean-Paul Tremblay, P Sorenson, Tata-McGrawhill
- *Data Structures with Java*, 2nd edition, J Hubbard, Tata-McGrawhill
Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Practical List:
1. Implement the following
 a. Design a java program for type casting different types of variables.
 b. Design a Calculator class in java, and implement all the methods required by calculator operations.
 c. Design a java class for method overloading and method overriding.
2. Implement the following
 a. Design a java program for different types of inheritance.
 b. Design a java class for the use of interface.
 c. Design a java class performing string operations.
3. Implement the following
 a. Design a class in java to add two complex numbers using constructors.
 b. Design a java class for performing all the matrix operations i.e addition, multiplication, transpose etc.
 c. Design a java class for implementing the packages.
4. Implement the following
 a. Design a java class for implementing the concept of threading and multithreading.
 b. Design a java class for performing all the file-operations.
 c. Design a java class for operating the random access files using
5. Implement the following
 a. Design a class for sorting the names or numbers in ascending and descending order.
 b. Design a java class for implementing the operations of stack.
6. Implement the following
 a. Design a class in java for implementing the operations of queue.(insert, delete, display, exit)
 b. Design a class in java for implementing the operations of circular queue.
7. Implement the following
 a. Design a class to implement the operations of singly link-list. (insertion, deletion, sorting, display)
 b. Design a class to implement the operations of doubly-linked list.
8. Implement the following
 a. Implement the concept of hashing technique and also show its collision avoidance.
 b. Design a class to create a tree and also implement the binary search tree.
9. Show the implementation
 a. Design a class in java for creating the heap and also show heap sort for it.
 b. Design a class in java for implementing selection and insertion sort.
10. Show the implementation for the following
 a. Design a class in java for bubble and merge sort.
 b. Design a class in java for implementing the graph
<table>
<thead>
<tr>
<th>UNIT</th>
<th>TOPIC</th>
<th>LECTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Errors, Solutions of Algebraic and Transcendental Equations using - Bisection Method, the Method of False Position, Newton-Raphson Method. Interpolation: Interpolation: - Forward Difference, Backward Difference, Newton’s Forward Difference Interpolation, Newton’s Backward Difference Interpolation, Lagrange’s Interpolation.</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>III</td>
<td>Data types of Data, Mean, Variance, measures of skewness and kurtosis based on moments, Bivariate data Covariance, Correlation, Karl Pearson’s coefficient properties of correlation coefficient and derivation of the formula for Spearman’s Rank, correlation coefficient, Regression coefficients and derivation of equation for lines of regression. Fitting of curves: Least square method, Fitting the straight line and parabolic curve,</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>IV</td>
<td>Random variables: Discrete and Continuous random variables, Probability density function, Probability distribution of random variables, Expected value, Variance. Moments Relation between Raw moments and Central moments. Distributions: Discrete distributions: Uniform, Binomial, Poisson, Continuous distributions: uniform distributions, exponential, (derivation of mean and variance only and state other properties and discuss their applications) Normal distribution state all the properties and its applications.</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>V</td>
<td>Central Limit theorem (statement only) and problems based on this theorem, Sampling distributions of i)sample mean ii) difference in the sample means iii) sample proportion,ans iv) difference in the sample proportions. Test of Hypothesis, Level of Significance, Critical Region, One Tailed and Two Tailed Test, Test of Significance for large Samples, Student’s ‘t’ Distribution and its applications, Interval Estimation of Population Parameters.</td>
<td>8 Lectures</td>
</tr>
<tr>
<td>VI</td>
<td>Chi-Square Distribution and its applications, Test of the Goodness of Fit and Independence of Attributes, Contingency Table, Yates Correction Linear Programming: Linear optimization problem, Formulation and Graphical solution, Basic solution and Feasible solution, Primal Simplex Method.</td>
<td>8 Lectures</td>
</tr>
</tbody>
</table>
Books:

Reference:
Elements of Applied Mathematics, Volume 1 and 2, P.N.Wartikar and J.N.Wartikar, A. V. Griha, Pune

Practical Code: USIT4P4

Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Practical List to be performed in Scilab:

1. **Practical 1: Solution of algebraic and transcendental equations:**
 a. Program to solve algebraic and transcendental equation by bisection method.
 b. Program to solve algebraic and transcendental equation by false position method.
 c. Program to solve algebraic and transcendental equation by Newton Raphson method.

2. **Practical 2: Interpolation**
 a. Program for Newton’s forward interpolation.
 b. Program for Newton’s backward interpolation.
 c. Program for Lagrange’s interpolation.

3. **Practical 3: Solving linear system of equations by iterative methods:**
 a. Program for solving linear system of equations using Gauss Jordan methods.

4. **Practical 4: Numerical Integration**
 a. Program for numerical integration using Trapezoidal rule.
 b. Program for numerical integration using Simpson’s 1/3rd rule.
 c. Program for numerical integration using Simpson’s 3/8th rule.

5. **Practical 5: Solution of differential equations:**
 a. Program to solve differential equation using Euler’s method
 b. Program to solve differential equation using modified Euler’s method.
 c. Program to solve differential equation using Runge-kutta 2nd order and 4th order methods.

6. **Practical 6: Random number generation and distributions**
 a. Program for random number generation using various techniques.
 b. Program for fitting of Binomial Distribution.
 c. Program for fitting of Poisson Distribution.
 d. Program for fitting of Negative Binomial Distribution.

7. **Practical 7: Moments, Correlation and Regression**
 a. Computation of raw and central moments, and measures of skewness and kurtosis.
 b. Computation of correlation coefficient and Fitting of lines of Regression (Raw and Frequency data)
 c. Spearman’s rank correlation coefficient.

8. **Practical 8: Fitting of straight lines and second degree curves**
 a. Curve fitting by Principle of least squares. (Fitting of a straight line, Second degree curve)
9. Practical 9: Sampling:
 a. Model sampling from Binomial and Poisson Populations.
 b. Model sampling from Uniform, Normal and Exponential Populations.
 c. Large sample tests–(Single mean, difference between means, single proportion, difference between proportions, difference between standard deviations.)
 d. Tests based on students ‘t-test’(Single mean, difference between means and paired ‘t’)

10. Practical 10: Chi-square test and LPP
 a. Test based on Chi-square- Distribution (Test for variance, goodness of Fit,)
 b. Chi-square test of independence of attributes.
 c. Solution of LPP by Simplex method.

<table>
<thead>
<tr>
<th>CLASS: B. Sc (Information technology)</th>
<th></th>
<th>Semester – IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Code : USIT405</td>
<td>Subject : Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>Periods per week</td>
<td>Lectures - 5</td>
<td>3 Credits</td>
</tr>
</tbody>
</table>

| Unit – I | Introduction: Embedded Systems and general purpose computer systems, history , classifications, applications and purpose of embedded systems | 8 Lectures |
|--------------------------------------| Core of embedded systems: microprocessors and microcontrollers, RISC and CISC controllers, Big endian and Little endian processors, Application specific ICs, Programmable logic devices, COTS, sensors and actuators, communication interface, embedded firmware, other system components, PCB and passive components. | |

Unit-II	Characteristics and quality attributes of embedded systems: characteristics, operational and non-operational quality attributes, application specific embedded system – washing machine, domain specific - automotive.	8 Lectures
--------------------------------------	Programming embedded systems: structure of embedded program, infinite loop, compiling , linking and locating, downloading and debugging	8 Lectures
Unit-III	Embedded Hardware: Memory map, i/o map, interrupt map, processor family, external peripherals, memory – RAM , ROM, types of RAM and ROM, memory testing, CRC ,Flash memory	8 Lectures
Unit-IV	Peripherals: Control and Status Registers, Device Driver, Timer Driver- Watchdog Timers, Embedded Operating System, Real-Time Characteristics, Selection Process	8 Lectures
Unit –V	Design and Development: embedded system development environment – IDE, types of file generated on cross compilation, disassembler/ decompiler, simulator , emulator and debugging , embedded product development life-cycle, trends in embedded industry.	8 Lectures
Books:
Programming Embedded Systems in C and C++, First Edition January, Michael Barr, O'Reilly
Introduction to embedded systems, Shibu K V, TATAMCGRAW-HILL.

References:
Embedded Systems, Rajkamal, TATAMCGRAW-HILL

Practical Code: USIT4P5

Term Work: Should contain at least 6 assignments (one per unit) covering the syllabus.

Tutorial: At least three tutorials based on above syllabus must be conducted.

Practical List:
1) Configure timer control registers of 8051 and develop a program to generate given time delay.
2) Port I / O: Use one of the four ports of 8051 for O/P interfaced to eight LED’s. Simulate binary counter (8 bit) on LED’s
3) Serial I / O: Configure 8051 serial port for asynchronous serial communication with serial port of PC exchange text messages to PC and display on PC screen. Signify end of message by carriage return.
4) Interface 8051 with D/A converter and generate square wave of given frequency on oscilloscope.
5) Interface 8051 with D/A converter and generate triangular wave of given frequency on oscilloscope.
6) Using D/A converter generate sine wave on oscilloscope with the help of lookup table stored in data area of 8051.
7) Interface stepper motor with 8051 and write a program to move the motor through a given angle in clock wise or counter clock wise direction.
8) Generate traffic signal.
9) Temperature controller.
10) Elevator control.
Issues related to Term Work, tutorial, assignments and Practicals
Following is the marks distribution for Theory and Practical. Minimum 16 marks out of 40 and 24 marks out of 60 for passing in Theory and 8 marks out of 20 and 12 marks out of 30 for passing in Practical.
Credit of 3 of Theory and 1 of Practical for any course is to be awarded only if students clear.

Semester III

<table>
<thead>
<tr>
<th>Course</th>
<th>Internal Assessment (40 Marks)</th>
<th>External Assessment (60 Marks)</th>
<th>Total (100 Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assignment</td>
<td>Tutorial</td>
<td>Class Test</td>
</tr>
<tr>
<td>USIT301</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>USIT302</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>USIT303</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>USIT304</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>USIT305</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Practical

<table>
<thead>
<tr>
<th>Course</th>
<th>Internal Assessment (20 Marks)</th>
<th>External Assessment (30 Marks)</th>
<th>Total (50 Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USIT3P1</td>
<td>Case Study</td>
<td>Case Study</td>
<td></td>
</tr>
<tr>
<td>USIT3P2</td>
<td>Problem Solving</td>
<td>Problem Solving</td>
<td></td>
</tr>
<tr>
<td>USIT3P3</td>
<td>Lab and Journal</td>
<td>Practical Exam</td>
<td></td>
</tr>
<tr>
<td>USIT3P4</td>
<td>Lab and Journal</td>
<td>Practical Exam</td>
<td></td>
</tr>
<tr>
<td>USIT3P5</td>
<td>Lab and Journal</td>
<td>Practical Exam</td>
<td></td>
</tr>
</tbody>
</table>

Semester IV

<table>
<thead>
<tr>
<th>Course</th>
<th>Internal Assessment (40 Marks)</th>
<th>External Assessment (60 Marks)</th>
<th>Total (100 Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assignment</td>
<td>Tutorial</td>
<td>Class Test</td>
</tr>
<tr>
<td>USIT401</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>USIT402</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>USIT403</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>USIT404</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>USIT405</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

Practical

<table>
<thead>
<tr>
<th>Course</th>
<th>Internal Assessment (20 Marks)</th>
<th>External Assessment (30 Marks)</th>
<th>Total (50 Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USIT4P1</td>
<td>Lab and Journal</td>
<td>Practical Exam</td>
<td></td>
</tr>
<tr>
<td>USIT4P2</td>
<td>Problem Solving</td>
<td>Problem Solving</td>
<td></td>
</tr>
<tr>
<td>USIT4P3</td>
<td>Lab and Journal</td>
<td>Practical Exam</td>
<td></td>
</tr>
<tr>
<td>USIT4P4</td>
<td>Lab and Journal</td>
<td>Practical Exam</td>
<td></td>
</tr>
<tr>
<td>USIT4P5</td>
<td>Case Study</td>
<td>Case Study</td>
<td></td>
</tr>
</tbody>
</table>
- Tutorials are theory/problems to be solved by the students in the classroom at the end of practical/theory session.
- Assignments are theory/problems to be solved by the students at home.
- Class Test is to be conducted in the classroom with due notice. Test could be out of any sum total but is to be converted out of 20 for class test.
- Semester I, II, III, IV are college examinations. Question papers will be set by examiners appointed by Principals of the affiliated colleges.

Suggested Question Paper Format for END Semester Examination

Duration: 2 hrs.
Total Marks: 60

All Questions Compulsory:

Q. 1	From Unit I
	Attempt any two of following
i. 5 marks
ii. 5 marks
iii. 5 marks
	10 marks

Q. 2	From Unit II
	Attempt any two of following
i. 5 marks
ii. 5 marks
iii. 5 marks
	10 marks

Q. 3	From Unit III
	Attempt any two of following
i. 5 marks
ii. 5 marks
iii. 5 marks
	10 marks

Q. 4	From Unit IV
	Attempt any two of following
i. 5 marks
ii. 5 marks
i. 5 marks
	10 marks

Q. 5	From Unit V
	Attempt any two of following
i. 5 marks
ii. 5 marks
iii. 5 marks
	10 marks

Q. 6	From Unit VI
	Attempt any two of following
i. 5 marks
ii. 5 marks
iii. 5 marks
	10 marks

Note: Internal choice should be given.