AC 10/02/2012 Item No. 4.43

Preamble

This syllabus is the extension of the existing syllabus which is currently being taught to MSc Computer Science of University of Mumbai for the last few years, but modified to be placed within the credit based system to be implemented from the academic year 2012-2013. However, there are few changes incorporated in the existing syllabus based on the feedback of the teaching and student community as well as to incorporate recent trends.

The syllabus proposes four subjects for each of the semesters. Each subject has theory as well as practical components. The theory component offers 4 credits and practical component offers 2 credits. Thus, each semester is of 24 credits. The four subjects in the first semester are Principles of Compiler Design- I, Digital Signal Processing- I, Mobile Computing, and Data warehousing and mining. The second semester offers Principles of Compiler Design-II, Digital Signal Processing- II, Computer Simulation and Modelling, and Advanced Database Systems. Each of the theory paper has five units and is expected to cover in 60 lecture periods. Each of the practical paper is of 60 hours duration.

It is believed that the proposed changes as part of the credit based system will bring a qualitative change in the way MSc Computer Science is taught, which will offer a more enriched learning experience.

Revised syllabus of M.Sc. Computer Science (Based on Credit and grading system)

Semester I							
Paper code	Paper nomenclature	Lectures	Credit	Practical Paper	Hrs	Credit	Total Credit
PSCS101	Principles of Compiler Design-I	60	04	Paper I	60	02	06
PSCS102	Digital Signal Processing-I	60	04	Paper II	60	02	06
PSCS103	Mobile Computing	60	04	Paper III	60	02	06
PSCS104	Data Warehousing and Mining	60	04	Paper IV	60	02	06
						Total	24
Semester II							
PSCS201	Principles of Compiler Design-II	60	04	Paper V	60	02	06
PSCS202	Digital Signal Processing-II	60	04	Paper VI	60	02	06
PSCS203	Computer Simulation & Modeling	60	04	Paper VII	60	02	06
PSCS204	Advanced Database Systems	60	04	Paper VIII	60	02	06
						Total	24

Total credits for M.Sc. Part I =(Semester I - 24 and Semester II - 24) =48

Evaluation: The students will be evaluated internally and externally. The external evaluation will be done by the committee appointed by the University norms. Standard passing and scale will be as per the university norms.

M.Sc. Part - I Computer Science Syllabus Restructured for Credit Based and Grading System

SEMESTER: I

Paper I: Principles of Compiler Design-I: PSCS101

Paper II: Digital Signal Processing-I: PSCS102

Paper II: Mobile Computing: PSCS103

Paper III: Data Warehousing and Mining: PSCS104

SEMESTER: II

Paper IV: Principles of Compiler Design-II: PSCS201

Paper V: Digital Signal Processing-II: PSCS202

Paper VI: Computer Simulation & Modelling: PSCS203

Paper VIII: Advanced Database Systems: PSCS204

SEMESTER I

Paper I: Principles of Compiler Design-I: PSCS 101

	Ι	Introduction to Compilers	
PSCS101	Π	Programming languages	
	III	Finite automata and lexical analysis	4
	IV	The syntactic specification of Programming Languages and Basic Parsing Techniques	
	V	Automatic Construction of Efficient Parsers	

Paper II: Digital Signal Processing-I: PSCS 102

	Ι	Theory of Discrete-Time Linear Systems	
	II	The Theory and approximation of Finite Duration Impulse response digital filters	
PSCS102	III	Theory and approximation of Infinite Impulse, Response digital filters	4
	IV	Finite word length effects in digital filters	
	V	Spectrum Analysis and the Fast Fourier Transform	

Paper III: Mobile Computing: CS 103

	Ι	Introduction, Wireless Transmission and Medium Access Control	
PSCS103	II	Telecommunication, Satellite and Broadcast Systems	4
	III	Wireless LAN and ATM	
	IV	Mobile Network and Transport Layer	
	V	Support for Mobility	

Paper IV: Data Warehousing and Mining: CS 104

	Ι	Introduction to Data warehousing	
PSCS104	Π	Designing and maintaining Data warehouse	
	III	Introduction to Data Mining	4
	IV	Data Mining Algorithms	
	V	Advanced topics	

Detail Syllabus Semester I

Course Code	Title	Credite
Course Coue	The	Cleans
PSCS 101	Principles of Compiler Design-I [60 Lectures]	4
Unit I: Introduc	tion to Compilers:	
Compilers and the	ranslators, Why do we need translators?, The structure of a compile	r, Lexical
analysis, Syntax	analysis, Intermediate code generation, Optimization, Code generation	ion, Book
keeping, Error ha	andling, Compiler writing tools [08L]	
Unit II: Program	nming languages:	
High-level prog	ramming languages, Definitions of programming languages, The le	xical and
syntactic structu	re of a language, Data elements, Data structures, Operators, As	signment,
Statements, Prog	gram units, Data environments, Parameter transmission, Storage ma	nagement
[05L]		
Unit III: Finite a	automata and lexical analysis:	
The role of the l	exical analyzer, A simple approach to the design of lexical analyzers	s, Regular
expressions, Fin	ite automata, From regular expressions to finite automata, Minim	nizing the
number of states	s of a DFA,A language for specifying lexical analyzers, Implementa	ation of a
lexical analyzer [[16L]	
Unit IV: The sy	ntactic specification of Programming Languages and Basic Parsing	5
Techniques:		
Context-free gra	mmars, Derivations and parse trees, Capabilities of context-free g	grammars,
Parsers, Shift-re	duce parsing, Operator-precedence parsing, Top-down parsing, I	Predictive
parsers [15L]		
Unit V: Automa	tic Construction of Efficient Parsers:	
LR parsers, Th	e canonical collection of LR(0) items, Constructing SLR parsir	ng tables,
Constructing can	onical LR parsing tables, Constructing LALR parsing tables, Using a	mbiguous
grammars, An a	utomatic parser generator, Implementation of LR parsing tables, Con	nstructing
LALR sets of iter	ms [16L]	
References:		
Principles of Cor	npiler Design, Alfred V. Aho & Jeffrey D. Ullman	

Course Code	Title	Credits	
Course Code	Title	Credits	
PSCS 102	Digital Signal Processing –I [60 Lectures]	4	
Unit I: Theory of Discrete-Time Linear Systems Sequences-Representation of arbitrary sequences-Linear time variant systems-causality, stability- difference equations-frequency response-first order systems-second order systems- Discrete Fourier series-relation between continuous and discrete Systems. The z Transform-the Relation between the z Transform and the Fourier transform of a sequence-Solution of differences equation using one sided transform-geometric evaluation of the Fourier Transform- Digital Filter Realizations-structures for all zero filters-the discrete Fourier transform – convolution of sequences-linear convolution of finite duration sequences-the discrete Hilbert transform. [20L] Unit II: The Theory and approximation of Finite Duration Impulse response digital filters Issues in Filter design-FIR filters Design techniques for Linear phase FIR filters-windowing- issues with windowing-frequency sampling-solution for optimization-linear programming-linear			
FIR Filters-Ma FIR Filters-Des response.[10L] Unit III: Theo IIR filters-filter Direct design of Unit IV: Finite Analog to digit systems. Types	ign of filters with simultaneous constrains on the time and ry and approximation of Infinite Impulse, Response digital filters coefficient-Digital Filter Design –Mapping of differentials-Transfe digital filters-comparison between FIR filters and IIR filters.[10L] word length effects in digital filters al conversions-digital to analog conversions-types of Arithmetic of quantization in digital filters-Dynamic range Constraints-Res	in digital alizations-	
ordering and pa quantization – Li	iring in cascade realizations-round of noise-fixed point analysis-C mit cycle oscillations.[10L]	Coefficient	
Unit V: Spectru Introduction to Decimation –in- Radix2 Algorith Analysis-Window algorithm- convo	Im Analysis and the Fast Fourier Transform Radix-2 FFT's-data shuffling and bit reversal-FFT computer prog Frequency Algorithm –Computing an Inverse DFT by doing a Dir m-Spectrum analysis at a single point in the z plane-spectrum analys ws in spectrum Analysis-Bluestein's Algorithm-The chirp z plution and correlation using number theoretic transforms.[10L]	ramming- rect DFT- sis in FFT transform	
Keferences:1) Theory as prentice H2) Digital Si D. G. Ma3) Digital Si 4) Discrete-5) Understation	nd application of Digital signal processing Lawrence R. Rabiner Bern hall of India. ignal Processing: Principles, Algorithms, and Applications by J. G. Pr nolakis. ignal Processing: A Practical Guide for Engineers and Scientists, <u>Steve</u> Time Signal Processing by A. V. Oppenheim and R. W. Schafer. nding Digital Signal Processing by Richard G. Lyons.	ard Gold- roakis and <u>en Smith</u>	

PSCS	103
IBCB	105

Unit I: Introduction, Wireless Transmission and Medium Access Control: Applications, A
short history of wireless communication. Wireless Transmission: Frequency for radio
transmission, Signals, Antennas, Signal propagation, Multiplexing, Modulation, Spread
spectrum, Cellular systems. Medium Access Control: Motivation for a specialized MAC: Hidden
and Exposed terminals. Near and Far terminals: SDMA, FDMA, TDMA: Fixed TDM, Classical
Aloha Slotted Aloha Carrier sense multiple access Demand assigned multiple access PRMA
packet reservation multiple access Reservation TDMA Multiple access with collision
avoidance Polling Inhibit sense multiple access: CDMA: Spread Aloha multiple access (14 L)
Linit He Telecommunication Sotellite and Broodcost Systems: CSM: Makile corriges
Unit II: Telecommunication, Satellite and Broadcast Systems: GSM: Mobile services,
System architecture, Radio interface, Protocols, Localization And Calling, Handover, security,
New data services; DECT: System architecture, Protocol architecture; ETRA, UMTS and IMT-
2000: UMTS Basic architecture, UTRA FDD mode, UTRA TDD mode, Satellite Systems:
History, Applications, Basics: GEO, LEO, MEO; Routing, Localization, Handover, Examples
Broadcast Systems: Overview, Cyclic repetition of data, Digital audio broadcasting: Multimedia
object transfer protocol; Digital video broadcasting. (12L)
Unit III: Wireless LAN and ATM: Infrared vs. Radio transmission, Infrastructure and Ad hoc
Networks, IEEE 802.11: System architecture, Protocol architecture, Physical laver, Medium
access control layer. MAC management. Future development: HIPERLAN: Protocol
architecture Physical layer Channel access control Sublayer Medium access control Sublayer
Information bases And Networking: Bluetooth: User scenarios Physical layer MAC layer
Notworking Socurity Link management Wireless ATM: Motivation for WATM Wireless
ATM working group WATM services Deference model: Example configurations Congris
ATW working group, wATW services, Reference model. Example configurations, Generic
reference model; Functions: wireless mobile terminal side, Mobility supporting network side;
Radio access layer: Requirements, BRAN; Handover: Handover reference model, Handover
requirements, Types of handover, Handover scenarios, Backward handover, Forward handover;
Location management: Requirements for location management, Procedures and Entities;
Addressing, Mobile quality of service, Access point control protocol. (13 L)
Unit IV: Mobile Network and Transport Layers: Mobile IP: Goals, assumptions and
requirements, Entities and Terminology, IP packet delivery, Agent advertisement and discovery,
Registration, Tunneling and Encapsulation, Optimizations, Reverse tunneling, Ipv6; Dynamic
host configuration protocol. Ad hoc networks: Routing, Destination sequence distance vector,
Dynamic source routing, Hierarchical algorithms, Alternative metrics, Mobile Transport Laver:
Traditional TCP: Congestion control Slow start Fast retransmit/fast recovery Implications on
mobility: Indirect TCP Snooping TCP Mobile TCP Fast retransmit/fast recovery
Transmission/time out fragzing Selective retransmission Transaction oriented TCP (11 I)
Indistinssion/unite-out neezing, Selective retrainsmission, Transaction oriented TeT. (IT L)
Unit V: Support for Mobility: File systems: Consistency, Examples; world wide web: Hypertext
transfer protocol, Hypertext markup language, Some approaches that might help wireless access,
System arcmiectures; wireless application protocol: Architecture, Wireless datagram protocol,
Wireless transport layer security, Wireless transaction protocol, Wireless session protocol, Wireless
application environment, Wireless markup language, WML script, Wireless telephony application,
Examples Stacks with Wap, Mobile databases, Mobile agents. (10 L)
References:
1. Jochen Schiller, .Mobile communications., Addison wisely, Pearson Education
2. William Stallings, .Wireless Communications and Networks.

- 3. Rappaort, .Wireless Communications Principals and Practices.4. YI Bing Lin , .Wireless and Mobile Network Architectures., John Wiley
- 5. P. Nicopolitidis , *Wireless Networks*., John Wiley
- 6. K Pahlavan, P. Krishnamurthy, Principles of Wireless Networks.
- 7. M. Richharia, *Mobile Satellite Communication: Principles and Trends.*, Pearson Education

Course Code	Title	Credits
PSCS104	Data Warehousing and Data Mining [60 Lectures]	4
Unit I : Introduction 1. Overview warehousi 2. Planning requireme 3. Architect metadata.	n to Data warehousing and Concepts: Need for data warehousing, Basic elements of data ing, Trends in data warehousing. and Requirements: Project planning and management, Collectin ents. cure And Infrastructure: Architectural components, Infrastructure	a 1g the re and
	-	[10L]
Unit II: Designing 1. Data De Dimensio data quali 2. Informat	and maintaining Data warehouse sign And Data Representation: Principles of dimension nal modeling advanced topics, data extraction, transformation ty. ion Access And Delivery: Matching information to classes of us	al modeling, and loading, sers, OLAP in
data ware. 3. Implemen deployme	house, Data warehousing and the web. ntation And Maintenance: Physical design process, data ent, growth and maintenance.	a warehouse
Unit III Introduction 1. Introduction types: Non Inconsiste 2. Knowledg 3. Algorithm	n to Data mining tion: Basics of data mining, related concepts, Data mining technic minal; Ordinal; Interval; Ratio, Data Issues: Missing values; Nois ent values; redundant values. Data pre-processing and discretization ge Discovery: KDD Process. ns for Classification	jues. Data y values; on.
Unit IV Data Minin	g Algorithms	[13L]
1. Clustering 2. Association	g. g. on rules.	[15L]
Unit V: Advanced to 1. Web Mining: 2. Advanced To 3. Visualisation characterizati	 opics Web Content Mining, Web Structure Mining, Web Usage Mining opics: Spatial mining, Temporal mining. control control contro control control control control control co	on, Analytical [10L]
References: (1) Paulraj Ponnian, " (2) Ralph Kimball, " (3) Dunham, Margara (4) Witten, Ian and E Second Edition, N Additional Reference	"Data Warehousing Fundamentals", John Wiley. The Data Warehouse Lifecycle toolkit", John Wiley. et H, Data Mining: Introductory and Advanced Topics, Prentice H Tabe Frank, Data Mining: Practical Machine Learning Tools and T Morgan Kaufmann.	Iall. 'echniques,
 (1) W.H. Inmon, "Bu (2) R. Kimpall, "The (3) E.G. Mallach, "D (4) Han and Kamber, 2006. 	wilding the Data Warehouses", Wiley Dreamtech. Data Warehouse Toolkit", John Wiley. Decision Support and Data Warehouse systems", TMH. , Data Mining: Concepts and Techniques, Second Edition, Morgan	n Kaufmann,

(5) Berry, Browne, Lecture Notes in Data Mining, World Scientific, 2006.

(6) Berry and Linoff, Data Mining Techniques, Second Edition, Wiley, 2004.

(7) Inmon, Building the Data Warehouse, Wiley, 1993.

PRACTICALS

At the end of First Semester there will be a practical examination based on Theory PSCS 101, PSCS 102, PSCS 103 and PSCs 104.

	Principles of Compiler Design using C/C++/Java	
	1. Right linear grammar to left linear grammar	
	2. Conversion of NDFA to DFA	
PSCS-P1	3. Implementation of Warshall Algorithm and Kleen Closure	2
	4. Simple Precedence Matrix	4
	5. Parsing using Simple Precedence Matrix	
	6. Linearising Simple Precedence Matrix	
	7. Parsing using Simple Precedence Function	
	Digital Signal Processing using Matlab	
	1. Basic Signals.	
	2. Frequency, Magnitude and Phase Response	
	3. Z – Transform	
	4. $N - DFT$	
	5. N-DFT Using Twiddle Matrix	
	6. Linear Convolution	
PSCS-P2	7. Circular Convolution	2
	8. Low – Pass FIR Filter	
	9. High – Pass FIR Filter	
	10. High-Pass and Low-Pass FIR Filter on various Inputs	
	11. Band-Pass and Band-stop FIR Filters	
	12. Analog Filters	
	13. Power Spectral Density	
	14. Remez Exchange Algorithm	
	Mobile Applications using J2ME toolkit	
	1. Create an application to draw simple text.	
	2. Create an application to draw simple text and perform various operations.	
	3. Create an application to handle multiple forms.	
	4. Create an application to demonstrate timers.	
DSCS D2	5. Create an application to demonstrate bouncing ball in mobile application	2
1505-15	7. Create an application to demonstrate a simple Calculator	4
	8 Create an application to demonstrate different input boxes	
	9 Create an application to demonstrate a dialog box	
	10. Create an application to display the bitmap image.	
	11. Create an application to demonstrate various types of events.	
	12. Create an application for searching particular word in a text paragraph.	
	Data warehousing and Data Mining	
	1. Create OLAP cube using star and Snowflake schema.	
	2. Working with Measures in cube.	
	3. Firing queries on the cube by using MDX application	
DCCC D4	4. Data pre-processing and discretization	2
PSC5-P4	5. Classification problems	2
	6. Clustering Analysis	
	7. Association Rule Mining	
	8. Data visualization	
	Suggested Software:Data warehouse: Microsoft SQL Server 2000.	

Data Mining: Practicals are conducted using Data mining 'workbench'	
software WEKA installed on Windows image. May be available under	
Linux. Freely downloadable from University of Waikato:	
http://www.cs.waikato.ac.nz/ml/weka/	

SEMESTER II

Paper V: Principles of Compiler Design-II: CS 201

PSCS201	Ι	Syntax-Directed Translation	
	II	More about Translation Symbol Tables	4
	III	Error detection and recovery	
	IV	Introduction to code, loop optimization and data-flow analysis	
	V	Code generation	

Paper VI: Digital Signal Processing-II: CS 202

PSCS202	Ι	An introduction to the theory of two dimensional signal processing and Digital hardware	
	II	Special purpose hardware for digital filtering and signal generation	Λ
	III	Special purpose hardware for FFT	4
	IV	General Purpose hardware for signal Processing facilities	
	V	Application of Digital signal processing to Speech and Radar	

Paper VII: Computer Simulation & Modeling: CS 203

PSCS203	Ι	Introduction to Simulation, examples , Principles and Software	
	Π	Statistical and Queuing Models in Simulation	4
	III	Random Number and Variate Generation	
	IV	Input Modeling and Verification and Validation of Simulation Model	
	v	Output Analysis for a single model, Comparison and Evaluation of Alternative System Design and Case Studies	

Paper VIII: Advanced database system: CS 204

	Ι	Object Database Systems	
PSCS204	Π	Parallel and Distributed Databases	4
	III	Databases on the Web	

IV	Active and Deductive Databases	
V	Spatial and Temporal Databases	

Detail Syllabus Semester II

Course Code	Title	Credits	
PSCS201	Principles of Compiler Design-II	4	
Unit I: Syntax-I	Directed Translation		
Syntax-directed	translation schemes, Implementation of syntax-directed translators, In	termediate	
code, Postfix no	tation, Parse trees and syntax trees, Three-address code, quadruples, a	and triples	
,Translation of a	assignment statements, Boolean expressions, Statements that alter th	ne flow of	
control, Postfix tr	ranslations [17L]		
Unit II: More al	bout Translation and Symbol Tables		
Array references	in arithmetic expressions, Procedure calls, Declarations ,Case statement	nts, Record	
structures, Symb	ool Tables: The contents of a symbol table, Data structures for symbol	bol tables,	
Representing sco	pe information, Implementation of block-structured languages, Storage	allocation	
in FORTRAN, S	torage allocation in block-structured languages [12L]		
Unit III: Error	detection and recovery		
Errors, Lexical-p	hase errors, Syntactic-phase errors, Semantic errors [03L]		
Unit VI: Introdu	uction to code, loop optimization and data flow analysis		
The principle sou	arces of optimization, Loop optimization, The DAG representation of ba	sic blocks,	
Global data-flow	v analysis ,loop optimization: Dominators, Reducible flow graphs, I	Depth-first	
search, Loop-ir	variant computations, Induction variable elimination ,Some o	ther loop	
optimizations, I	Data-flow analysis, Reaching definitions again, Available expression	ons, Copy	
propagation, Bac	kward flow problems, Very busy expressions and code hoisting, The for	ur kinds of	
data-flow analysi	data-flow analysis problems. [23L]		
Unit V: Code generation			
Object programs, Problems in code generation, A machine model, A simple code generator,			
Register allocation and assignment, Code generation from DAG's			
Peephole optimization [05L]			
References:			
Principles of Cor	npiler Design, Alfred V. Aho & Jeffrey D. Ullman		

DSCS202	Digital Signal Processing II	1
Course Code	Title	Credits

Unit I: An introduction to the theory of two dimensional signal processing and Digital hardware:

Two-dimensional signals-systems-causality- seperability -stability-difference equations-Frequency Domain Techniques- Z Transforms-finite sequences-Two dimensional DFT-Two dimensional windows-Frequency sampling filters- frequency transformations from one to two dimensions. Digital Hardware: Design procedure for Digital Signal Processing Hardware- the major logic families- commercial logic packages- gates, multiplexers and decoders- Flip-Flops-arithmetic Units- dividers and floating point hardware. **[15L]**

Unit II: Special purpose hardware for digital filtering and signal generation: Direct form FIR hardware- parallelism for direct form FIR- Cascade FIR filters-IIR filters- Digital Touch Tone Receiver (TTR) - Digital time Division Multiplexing (TDM) to Frequency Division Multiplexing (FDM) translator partitioning of digital filters for IC Realization- Hardware realization of a Digital Frequency Synthesizer. [10L]

Unit III: Special purpose hardware for FFT : FFT indexing- bit reversal and digit reversal for fixed radices- Comparison of computations for radices- introduction to quantization effects in FFT Algorithms. Hardware for Radix 2 Algorithm- FFT Computation using Fast Scratch Memory.Radix 2 and Radix 4 Parallel structures using RAM's- Pipeline FFT- Comparison of Pipe line FFT's-overlapped FFT with random access memory-real time convolution via FFT using a single Ram and one AE. **[10L]**

Unit IV: General Purpose hardware for signal Processing facilities : Special and general purpose computers- input output problems for real time processing- methods of improving computer speed – parallel operations of memories, Arithmetic, control and instruction fetches- the Linco Laboratory Fast Digital Processor(FDP). Doing FFT in FDP- LSP2. **[10L]**

Unit V: Application of Digital signal processing to Speech and Radar:

Models of speech production-Short time spectrum analysis- speech analysis-synthesis System based on short time spectrum analysis- channel vocoder- analyzers-synthesizers- pitch detection and voiced unvoiced detections- homomorphic processing of speech, vocoder-formant Synthesis-Voiced –Unvoiced Detection- Voiced Fricative excitation network- Linear prediction of speech-Computer Voice Response system.

Radar: Radar principle and application radar systems and parameter- Signal design and ambiguity functions- Airborne Surveillance Radar for Air Traffic Control – Digital matched Filter for a high performance Radar. **[15L]**

References:

- 1) Theory and application of Digital signal processing Lawrence R. Rabiner Bernard Goldprentice hall of India.
- 2) Digital Signal Processing and the Microcontroller by Dale Grover and John R. (Jack) Deller with illustrations by Jonathan Roth.

Course Code	Title	Credits
PSCS203	Computer Simulation & Modeling [60 Lectures]	4
Unit I: Introduce Introduction: Symodels, Steps is Simulation of Q discrete event sin Desirable software Trends in simula	tion to Simulation, examples, Principles and Software stem and System environment, Components of system, Type of systems, n simulation study, Advantages and Disadvantages of simulation. E ueueing systems, Other examples of simulation. General Principles: Con- mulation, List processing. Simulation Software: History of simulation are features, General-purpose simulation packages, Object oriented sin tion software. [16L]	Type of examples: ncepts of software, mulation,
Unit II : Statist Statistical Mode process, Empiric notations, Long p population Mark [16L]	ical and Queuing Models in Simulation: ls: Useful statistical model, Discrete distribution, Continuous distribution, al distribution. Queueing Models: Characteristics of Queueing systems, C run measures of performance of Queueing systems, Steady state behavior of ovian models, Steady state behavior finite population model, Network of	, Poisson Queueing of infinite ? Queues.
Unit III Randor Random Number Techniques for Generation: Inver [12L]	n Number and Variate Generation: er: Properties of random numbers, Generation of pseudo random generating random numbers, Tests for random numbers. Random erse transform technique, Convolution method, Acceptance rejection technique	numbers, Variate chniques.
Unit IV : Input Data Collection, Selection input Validation of S simulation mode	Modeling and Verification and Validation of Simulation Model Input M Identifying the Distribution of data, Parameter estimation, Goodness of model without data, Multivariate and Time series input models.Verifica imulation Model: Model building, Verification, and Validation, Verificalls, Calibration and Validation of models. [07L]	Aodeling: fit tests, ation and cation of
Unit V : Outp System Design a Output Analysis nature of output simulators, Outp System Design: modeling, Optin Simulation of co	ut Analysis for a single model, Comparison and Evaluation of Alt and Case Studies for a Single Model: Types of simulations with respect to output analysis, S data, Measure of performance and their estimation, Output analysis of ter ut analysis for steady state simulation. Comparison and Evaluation of Al Comparison of two system design, Comparison of several system design nization via simulation. Case Studies: Simulation of manufacturing mputer systems, Simulation of super market, Simulation of pert network. [0]	ternative tochastic rminating lternative gn, Meta systems, 09L]
 References: Jerry Banks, Edition] Averill Law, Gordon, <i>Syste</i> Bernard Zeig Academic Pr Donald W. B W David Ke HILL. 	John Carson, Barry Nelson, David Nicol, <i>.Discrete Event System Simula</i> W. David Kelton, <i>.Simulation Modeling and Analysis.</i> , McGRAWHILL <i>em Simulation.</i> , PHI gler, Herbert Praehofer, Tag Gon Kim, <i>.Theory of Modeling and Sin</i> ess Narsing Deo, <i>.System Simulation with Digital Computer.</i> , PHI ody, <i>.System Analysis and Modeling.</i> , Academic Press Harcourt India lton, Randall Sadowski, Deborah Sadowski, <i>.Simulation with Arena.</i> , Mo	ttion. [3 rd Geffery nulation., cGRAW-

Course Code	Title	Credits			
PSCS204	Advanced Databases	4			
Unit I Object D	Unit I Object Database Systems :				
Object-Oriented	data model, Strategies for developing OODBMS, Persistence	programming			
languages, Obje	ect identity and structure, complex objects, Accessing an object	, Persistence			
Schemes, Pointe	er swizzling techniques, Issues in OODBMS like transactions and	concurrency,			
ODMG, Nested	relations, Collections, Query processing and Optimization. [15L]				
Unit II: Paralle	and Distributed Databases :				
Architectures for	r parallel databases, Parallel query evaluation; Parallelizing individua	al operations,			
Sorting, Joins;	Distributed database concepts, Data fragmentation, Replication, a	nd allocation			
techniques for d	istributed database design; Query processing in distributed databases;	Concurrency			
control and Reco	overy in distributed databases. [15L]				
Unit III: Datab	ases on the Web:				
Data versus Doc	cuments, Storing and Retrieving Data, Query Languages like Xquery	, Storing and			
Retrieving Docu	ments, Semi Structured Data Model, Indexes for text data. [10L]				
Unit IV: Active	and Deductive Databases :				
Active database	s: Languages for rule specification: Events, Conditions, Actions. Exe	ecution			
model: Rule exec	cution, Conflicts resolution, Coupling modes and termination.				
Deductive datab	bases: Introduction to recursive queries, Datalog, Least model semantic	cs, The fixed			
point operator, S	afe datalog program, Stratification, Evaluating recursive queries. [10L	<i>.</i>]			
Unit: V: Spatia	al and Temporal Databases :				
Spatial Databas	es: Types of spatial data, R tree structure, Spatial query evaluation, In	ntroduction to			
GIS, Comparison	n between spatial databases and GIS. Data structures in GIS.				
Temporal Data	bases: Transaction time databases, Valid time databases:, Bi-tempor	ral databases,			
Temporal querie	S.				
Introduction to	Mobile databases. [10L]				
References:					
1. Raghu Ra	amakrishnan, Johannes Gehrke, "Database Management Systems", Mc	Graw-Hill			
2. Elmasri a	and Navathe, "Fundamentals of Database Systems", Pearson Education	1			
Additional References:					
1. Korth, Si	lberchatz, Sudarshan, "Database System Concepts", McGraw-Hill.				
2. Peter Rol	o and Coronel, "Database Systems, Design, Implementation and Manag	gement",			
Thomson	Learning.				
3. C.J.Date,	Longman, "Introduction To Database Systems", Pearson Education				

PRACTICALS

At the end of Second Semester there will be a practical examination based on Theory PSCS 201, PSCS 202, PSCS 203 and PSCS 204.

PSCS-P5	 Conversion of Infix to Postfix notation Conversion of Postfix to Infix notation Generation of three address code Quadruple Triple DAG representation Code generation 	2
PSCS-P6	 Two – Dimensional Linear Convolution Two – Dimensional Cross – Correlation and Auto – Correlation Stability Bit Reversal Algorithm Radix 2 DIT FFT Algorithm 	2
PSCS-P7	 Computer Simulation and Modeling 1. Single Channel Queuing Model 2. Multi Channel Queuing Model 3. Inventory System 4. Discrete Distribution 5. Continuous Distribution 6. Random Number Generation 7. Random Number Test 8. Acceptance-Rejection Technique 	2
PSCS-P8	Advanced Databases Practical topics 8. Object oriented databases 9. Distributed databases 10. XML databases 11. Spatial databases 12. Temporal databases 13. Active databases Software recommended : Oracle.	2